(&:IRISA

Activity Report 2017

Research-Team ArchWare

Software Architecture

Architecting Software-intensive Systems and
Systems-of-Systems

D4 — Language and Software Engineering

PP

Team ARCHWARE IRISA Activity Report 2017

ii

Team ARCHWARE IRISA Activity Report 2017

Contents

|1 Team composition| 1

|2 Overall objectives| 2
I OVEIVIEW .« « o oo oo e e 2
2.2 Scientific foundations|o oo oo 5
2.3 Application domains| 5

B Sciontif 0 | 6
[3.1 The SoS Architecture Description Language (SosADL)[.

[3.1.1 Architecturally describing the emergent behavior of SoS with |

[DosADII . . o o 7

[3.1.2 Architecturally describing selt-organizing SoS with SosADL| . . . 8

[3.1.3 Synthesis of software architectures for Sod> with SosADL| 8

13.1.4 Designing software architectures ot service-oriented robotic systems| 9

13.1.5 Pivot model for supporting verification ot SoS architectures |

[described with SosADLf oo 9
[3.1.6 Formal verification by model checking ot SCADA architectures| . 10

13.2 Methods for architecting software-intensive systems and SodS|. 10
[3.2.1 Preserving architectural pattern composition in |

| component-based software architecture| 11
13.2.2 Automated refactoring of component-based software architecture] 11

[3.2.3 Mission-based simulation for preparing So5 architecturel 12

|4 Software development| 12

4.1 The Sob Architect Studio for SosADII 0. 12
4.1.1 The type system in Coq, the type-checker and the proof generator| 12
4.1.2 SosADL2Alloy: The concrete architecture generator| 13
4.1.3 SosADL2DEVS: The DEVS generator] 13
4.1.4 SosADL2IoSTS: The IoS'TS generator] 13
4.1.5 The SobADL dtudiol o oo oo 13

6__Contracts and collaborations] 14
b.1 National Initiatives oo 14
5.2 Bilateral industry grants|o 0000000000 14

iii

Team ARCHWARE IRISA Activity Report 2017

6D Thation 15
6.1 Promoting scientific activities| L. 15
611 Journall 17

[6.1.2 Scientific Expertise|o oo 17

[6.1.3 Laboratory Administration| 17

[6.1.4 Academic Council (CAC)|, 17

6.2 eaching| 18
6.2.1 Teaching|. 18

6.2.2 Teaching Responsibility] 18

iv

Team ARCHWARE IRISA Activity Report 2017

1 Team composition

Researchers and faculty
Flavio Oquendo, Full Professor, PEDR, Université Bretagne Sud (Head)
Isabelle Borne, Full Professor, Université Bretagne Sud
Nicolas Belloir, Assistant Professor, Ecoles de St-Cyr Coétquidan
Jérémy Buisson, Assistant Professor, Ecoles de St-Cyr Coétquidan
Régis Fleurquin, Associate Professor, HDR, Université Bretagne Sud
Elena Leroux, Assistant Professor, Université Bretagne Sud
Salah Sadou, Full Professor, Université Bretagne Sud

Research engineers
Gersan Moguérou, Research Engineer, Université Bretagne Sud

PhD students
Delphine Beaulaton
Raounak Benabidallah
Rymel Benabidallah
Youcef Bouziane
Elyes Cherfa
Imane Cherfa
Lina Garcés
Milena Guessi-Margarido
Soraya Mesli-Kesraoui
Nan Zhang Messe
Valdemar Neto
Paul Perrotin
Franck Petitdemange
Eduardo Silva

Post-Doc
Armel Esnault

Administrative assistant
Sylviane Boisadan, BIATSS, Université Bretagne Sud

Team ARCHWARE IRISA Activity Report 2017
2 Overall objectives

2.1 Overview

The ArchWare Research Team addresses the scientific and technological challenges
raised by architecting complex software-intensive systems. Beyond large-scale dis-
tributed systems, it addresses in particular an emergent class of evolving software-
intensive systems that is increasingly shaping the future of our software-reliant world,
the so-called Systems-of-Systems (SoS).

Since the dawn of computing, the complexity of software and the complexity of
systems reliant on software have grown at a staggering rate. In particular, software-
intensive systems have been rapidly evolved from being stand-alone systems in the
past, to be part of networked systems in the present, to increasingly become systems-
of-systems in the coming future.

De facto, systems have been independently developed, operated, managed, and
evolved. Progressively, networks made communication and coordination possible among
these autonomous systems, yielding a new kind of complex system, i.e. a system that is
itself composed of systems. These systems-of-systems are evolutionary developed from
systems to achieve missions not possible by each constituent system alone.

Different aspects of our lives and livelihoods have become overly dependent on some
sort of software-intensive system-of-systems. This is the case of systems-of-systems
found in different areas as diverse as aeronautics, automotive, energy, healthcare, man-
ufacturing, and transportation; and applications that addresses societal needs as e.g.
in environmental monitoring, distributed energy grids, emergency coordination, global
traffic control, and smart cities.

Moreover, emergent platforms such as the Internet of Things and the Internet of
Everything and emergent classes of systems-of-systems such as Cyber-Physical Systems
are accelerating the need of constructing rigorous foundations, languages, and tools for
supporting the architecture and engineering of resilient systems-of-systems.

Complexity is intrinsically associated to systems-of-systems by its very nature that
implies emergent behavior: in systems-of-systems, missions are achieved through emer-
gent behavior drawn from the interaction among constituent systems. Hence, complex-
ity poses the need for separation of concerns between architecture and engineering: (i)
architecture focuses on reasoning about interactions of parts and their emergent prop-
erties; (ii) engineering focuses on designing and constructing such parts and integrating
them as architected.

Definitely, Software Architecture forms the backbone for taming the complexity of
critical software-intensive systems, especially in the case of systems-of-systems, where
architecture descriptions provide the framework for designing, constructing, and dynam-
ically evolving such complex systems, in particular when they operate in unpredictable
open-world environments.

Therefore, the endeavor of constructing critical systems evolved from engineering
complicated systems in the last century, to architecting critical SoSs in this century.
Critical SoSs, by their very nature, have intrinsic properties that are hard to address.

Team ARCHWARE IRISA Activity Report 2017

Furthermore, the upcoming generation of critical SoSs will operate in environments
that are open in the sense of that they are only partially known at design-time. These
open-world critical systems-of-systems, in opposite to current closed-world systems,
will run on pervasive devices and networks providing services that are dynamically
discovered and used to deliver more complex services, which themselves can be part of
yet more complex services and so on.

Besides, in SoSs, architectures are designed to fulfill specified missions. Indeed, an
important concern in the design of SoSs is the systematic modeling of both global and
individual missions, as well as all relevant mission-related information. Missions play a
key role in the SoS context since they define required capabilities of constituent systems
and the interactions among these systems that lead to emergent behaviors towards the
accomplishment of the global mission of the SoS.

Definitely, the unique characteristics of SoS raise a grand research challenge for the
future of software-reliant systems in our industry and society due to its simultaneous
intrinsic features, which are:

1. Operational independence: the participating systems not only can operate inde-
pendently, they do operate independently. Hence, the challenge is to architect
and construct SoS in a way that enables its operations (acting to fulfill its own
mission) without violating the independence of its constituent systems that are
autonomous, acting to fulfill their own missions.

2. Managerial independence: the participating systems are managed independently,
and may decide to evolve in ways that were not foreseen when they were originally
composed. Hence, the challenge is to architect and construct a SoS in a way that it
is able to evolve itself to cope with independent decisions taken by the constituent
systems and hence be able to continually fulfill its own mission.

3. Distribution of constituent systems: the participating systems are physically de-
coupled. Hence, the challenge is to architect and construct the SoS in a way that
matches the loose-coupled nature of these systems.

4. Fvolutionary development: as a consequence of the independence of the con-
stituent systems, a SoS as a whole may evolve over time to respond to chang-
ing characteristics of its environment, constituent systems or of its own mission.
Hence, the challenge is to architect and construct SoS in a way that it is able to
evolve itself to cope with these three kinds of evolution.

5. Emergent behaviors: from the collaboration of the participating systems may
emerge new behaviors. Furthermore, these behaviors may be ephemeral because
the systems composing the SoS evolve independently, which may impact the avail-
ability of these behaviors. Hence, the challenge is to architect and construct a SoS
in a way that emergent behaviors and their subsequent evolution can be discovered
and controlled.

In the case of an open-world environment, one can add the following characteristics:

Team ARCHWARE IRISA Activity Report 2017

1. Unpredictable environment: the environment in which the open-world SoS op-
erates is only partially known at design-time, i.e. it is too unpredictable to be
summarized within a fixed set of specifications, and thereby there will inevitably
be novel situations to deal with at run-time. Hence, the challenge is to architect
and construct such a system in a way that it can dynamically accommodate to
new situations while acting to fulfill its own mission.

2. Unpredictable constituents: the participating systems are only partially known at
design-time. Hence, the challenge is to architect and construct an open-world
SoS in a way that constituent systems are dynamically discovered, composed,
operated, and evolved in a continuous way at run-time, in particular for achieving
its own mission.

3. Long-lasting: as an open-world SoS is by nature a long-lasting system, re-
architecting must be carried out dynamically. Hence, the challenge is to evo-
lutionarily re-architects and evolves its construction without interrupting it.

The importance of developing novel theories and technologies for architecting and
engineering SoSs is highlighted in several roadmaps.

In France, it is explicitly targeted in the report prepared by the French Ministry of
Economy as one of the key technologies for the period 2015-2025 (étude prospective sur
et des Services du Ministére de ’Economie). In Europe, SoSs are explicitly targeted in
the studies developed by the initiative of the European Commission, i.e. Directions in
Systems-of-Systems Engineering, and different Networks of Excellence (e.g. HIPEAC)
and European Technological Platforms (e.g. ARTEMIS, NESSI). Two roadmaps for
systems-of-systems having been proposed, supported by the European Commission, is-
sued from the CSAs ROAD2SoS (Development of Strategic Research and Engineering
Roadmaps in Systems-of-Systems) and T-Area-SoS (Trans-Atlantic Research and Edu-
cation Agenda in Systems-of-Systems).

All these key actions and the roadmaps show the importance of progressing from
the current situation, where SoSs are basically developed in ad-hoc way, to a scientific
approach providing rigorous theories and technologies for mastering the complexity of
software-intensive systems-of-systems.

Overall, the long-term research challenge raised by SoSs calls for a novel paradigm
and novel trustful approaches for architecting, analyzing, constructing, and assuring the
continuous correctness of systems-of-systems, often deployed in unpredictable environ-
ments, taking into account all together their intrinsic characteristics.

Regarding the state-of-the-art, software-intensive system-of-systems is an emergent
domain in the research community. The systematic mapping of the literature shows
that 75% of the publications related to the architecture of systems-of-systems have
been published in the last 5 years and 90% in the last 10 years. Furthermore, most of
these publications raise open-issues after having experimented existing approaches for
architecting systems-of-systems.

Keywords: Software Architecture, Architecture Description, Architecture
Analysis, Safety Architecture, Cybersecurity Architecture, Mission Specification,
Software-intensive Systems, Software-intensive Systems-of-Systems.

Team ARCHWARE IRISA Activity Report 2017

2.2 Scientific foundations

For addressing the scientific challenge raised for architecting SoS, the targeted break-
through for the ArchWare Research Team is to conceive sound foundations and a
novel holistic approach for architecting open-world critical software-intensive systems-
of-systems, encompassing:

1. Architectural abstractions for formulating the architecture and re-architecture of
SoS;

2. Formalism and underlying computational model to rigorously specify the archi-
tecture and re-architecture of SoS;

3. Mechanisms to construct, manage, and evolve SoSs driven by architecture descrip-
tions, while resiliently enforcing their correctness, effectiveness, and efficiency;

4. Formalism and mechanisms for ensuring safety and cybersecurity at the architec-
tural level and their transformations towards implementation.

5. Concepts and formalisms for specifying and operating SoS missions and generating
abstract and concrete SoS architectures.

The research approach we adopt in the ArchWare Research Team for developing the
expected breakthrough is based on well-principled design decisions:

1. To conceive architecture description, analysis, and evolution languages based on
suitable SoS architectural abstractions;

2. To formally ground these SoS-specific architecture languages on well-established
concurrent constraint process calculi and associated logics;

3. To conceptually and technologically ground the construction and management of
SoSs on architecture descriptions defined by executable models;

4. To derive/generate abstract/concrete architectural descriptions from well-defined
mission specifications.

2.3 Application domains

The ArchWare Research Team develops formalisms, languages and software technologies
which are transverse to application domains while providing mechanisms for customiza-
tion to different architectural styles and application areas.

During 2017, addressed applications areas includes:

1. Internet-of-Things (IoT);
2. Fleet of Unmanned Aerial Vehicles (UAVs);

3. Supervisory Control And Data Acquisition (SCADA);

Team ARCHWARE IRISA Activity Report 2017

4. Service-oriented Robotics
5. e-Health;
6. Flood Monitoring SoS;

7. Critical SoSs.

3 Scientific achievements

3.1 The SoS Architecture Description Language (SosADL)

Keywords: Architecture Description Language (ADL), Software-intensive
Systems-of-Systems (SoS).

Participants: Flavio Oquendo, Jérémy Buisson, Elena Leroux, Gersan
Moguérou.

The architecture provides the right abstraction level to address the complexity of
Software-intensive Systems-of-Systems (SoSs). The research challenges raised by SoSs
are fundamentally architectural: they are about how to organize the interactions among
the constituent systems to enable the emergence of SoS-wide behaviors and properties
derived from local behaviors and properties by acting only on their connections, without
being able to act in the constituent systems themselves.

Formal architecture descriptions provide the framework for the design, construction,
and dynamic evolution of SoSs.

From the architectural perspective, in single systems, the controlled characteristics
of components under the authority of the system architect and the stable notion of con-
nectors linking these components, mostly decided at design-time, is very different from
the uncontrolled nature of constituent systems (the SoS architect has no or very limited
authority on systems) and the role of connection among systems (in an SoS, connections
among constituents are the main architectural elements for enabling emergent behavior
to make possible to achieve the mission of an SoS).

The nature of systems architectures (in the sense of architectures of single systems)
and systems-of-systems are very different:

e Systems architectures are described by extension. In the opposite, SoS architec-
tures are described by intention.

e Systems architectures are described at design-time for developing the system based
on design-time components. In the opposite, SoS architectures are defined at run-
time for developing the SoS based on discovered constituents.

e Systems architectures often evolves offline. In the opposite, SoS architectures
always evolves online.

Team ARCHWARE IRISA Activity Report 2017

We have continued the development of an Architecture Description Language (ADL)
specially designed for specifying the architecture of Software-intensive Systems-of-
Systems (SoS). It provides a formal ADL, based on a novel concurrent constraint process
calculus, coping with the challenging requirements of SoSs. Architecture descriptions are
essential artifacts for (i) modeling systems-of-systems, and (ii) mastering the complex-
ity of SoS by supporting reasoning about properties. In SosADL, the main constructs
enable: (i) the specification of constituent systems, (ii) the specification of mediators
among constituent systems, (iii) the specification of coalitions of mediated constituent
systems.

SoS are constituted by systems. A constituent system of an SoS has its own mis-
sion, is operationally independent, is managerially independent, and may independently
evolve. A constituent system interacts with its environment via gates. A gate provides
an interface between a system and its local environment.

Constituent systems of an SoS are specified by system abstractions via gates, be-
havior and their assumed /guaranteed properties. Assumptions are assertions about the
environment in which the system is placed and that are assumed through the speci-
fied gate. Guarantees are assertions derived from the assumptions and the behavior.
Behavior satisfies gate assumptions (including protocols) of all gates.

Mediators mediate the constituent systems of an SoS. A mediator has its own pur-
pose and, in the opposite of constituent systems, is operationally dependent of the SoS,
is managerially dependent of the SoS, and evolves under control of the SoS.

Mediators among constituent systems of an SoS are specified by mediator abstrac-
tions. The SoS has total control on mediators. It creates, evolves or destroys mediators
at runtime. Mediators are only known by the SoS. They enable communication, coor-
dination, cooperation, and collaboration.

Coalitions of mediated constituent systems form SoSs. A coalition has its own
purpose, may be dynamically formed to fulfill a mission through created emergent be-
haviors, controls its mediators

System-of-Systems are specified by SoS abstractions. The SoS is abstractly defined
in terms of coalition abstractions. SoS are concretized and evolve dynamically at run-
time. Laws define the policies for SoS operation and evolution. In SoSs, missions are
achieved through the emergent behavior of coalitions.

In the sequel, the main results of this line of work produced in 2017 are presented.

3.1.1 Architecturally describing the emergent behavior of SoS with
SosADL

Keywords: Emergent Behavior, Architecture Description, Software Architecture,
System-of-Systems (SoS), SosADL.

SoS is evolutionary developed from independent systems to achieve missions not
possible to be accomplished by a single system alone. They are architecturally designed
to exhibit emergent behavior, i.e. a new behavior that stem from the interactions
among constituent systems, but cannot be deduced from the behaviors of the constituent

Team ARCHWARE IRISA Activity Report 2017

systems themselves. In this research, we developed the concepts and constructs of a
novel Architecture Description Language (ADL), named SosADL, for architecturally
describing emergent behaviors of software-intensive SoSs. Regarding assessment, we
demonstrated the novel SosADL features for emergent behavior through an excerpt of a
real application for architecting a Reconnaissance SoS, focusing on the flocking behavior
of a fleet of Unmanned Aerial Vehicles (UAVs). For details see: [16].

3.1.2 Architecturally describing self-organizing SoS with SosADL

Keywords: Self-Organization, Emergence, Software Architecture,
Internet-of-Things (IoT), System-of-Systems (SoS), SosADL.

A challenging issue in the architectural design of SoS for the Internet-of-Things (IoT)
is how to architect an SoS in a way that the required behavior to fulfil the SoS mission
will emerge. Indeed, on the one hand, at design-time, most often we do not know which
are the concrete IoT systems that will become constituents of the SoS, these being pre-
dominantly identified at run-time; on the other hand, the correct architecture depends
not only on the constituent systems but also, largely, on the operational environment
where the SoS will be deployed. To address this challenge, this research investigated the
notion of self-organization, whose mechanism makes possible that the IoT constituent
systems themselves create and maintain a valid architecture enabling the production of
the required emergent behavior to fulfil the SoS mission. In particular, it has showed
how SosADL, a formal SoS Architecture Description Language (ADL), based on the
novel m-Calculus for SoS, supports the architectural description of self-organizing SoSs
for the IoT, upwardly causing SoS emergent behaviors at run-time. For details see: [17].

3.1.3 Synthesis of software architectures for SoS with SosADL

Keywords: Architecture Synthesis, Automated Constraint Solving, Architecture
Description Language (ADL), Software-intensive Systems-of-Systems (SoS), SosADL.

This research addresses the issue of architecture synthesis, i.e. creating on-demand
architectures automatically for a specific operational environment according to specified
constraints expressed in terms of an abstract architecture. Since constituent systems are,
in general, not known at design-time due to the evolving nature of SoSs, the architec-
ture description must specify at design-time which coalitions among constituent systems
are feasible at run-time. Moreover, as many SoS are being developed for safety-critical
domains, additional measures must be placed to ensure the correctness and complete-
ness of architecture descriptions. To address this issue, this research relies on SosADL,
a formal language tailored for the description of SoS architectures as dynamic associ-
ations between independent constituent systems whose interactions are mediated for
accomplishing a combined action. To synthesize concrete architectures that adhere to
one such description, in this work we developed a formal method that systematizes the
steps for producing such artifacts. The method creates an intermediate formal model
which expresses the SoS architecture in terms of a constraint satisfaction problem that
can be automatically analyzed for an initial set of properties. The feedback obtained in

Team ARCHWARE IRISA Activity Report 2017

this analysis can be used for subsequent refinements of the architecture description. A
software tool was also developed to support our method by automating the generation
of intermediate models and concrete architectures, thus concealing the use of constraint
solvers during SoS design and development. The method and its accompanying tool
were applied to model a SoS for urban river monitoring in which the feasibility of can-
didate abstract architectures was investigated. For details see: [3], ?].

3.1.4 Designing software architectures of service-oriented robotic systems

Keywords: Service-Oriented Architecture (SOA), Service-Oriented Robotics,
Architecture Description, Software-intensive Systems (SiS).

Robotics has experienced an increasing evolution and interest from the society in
recent years. Robots are no longer produced exclusively to perform repetitive tasks in
factories, they have been designed to collaborate with humans in several important ap-
plication domains. Robotic systems that control these robots are, therefore, becoming
larger, more complex and difficult to develop. In this scenario, Service-Oriented Archi-
tecture (SOA) has been investigated as a promising architectural style for the design
of robotic systems in a flexible, reusable and productive way. Although a considerable
amount of Service-Oriented Robotic Systems (SORS) has already been developed and
used, most of them have been designed in an ad hoc manner. The little attention and
limited support devoted to the design of SORS software architectures may not only
hamper the benefits of SOA adoption but also reduce the overall quality of robotic
systems, which are often used in safety-critical contexts. This research developed an
Architectural Design of Service-Oriented Robotic System (ArchSORS), a process that
supports a systematic design of SORS software architectures. Experimental results
showed that ArchSORS can lead to software architectures of higher quality. For details
see: [4].

3.1.5 Pivot model for supporting verification of SoS architectures described
with SosADL

Keywords: Model Transformation, Formal Analysis, Testing, Software
Architecture, Systems-of-Systems (SoS).

SosADL is a high-level architectural language used for the design of SoS architec-
tures as well as for the description of their functional properties in terms of temporal
logic. In order to verify the preservation of these properties, to validate the correct
functioning of an SoS with respect to its architecture and to simulate the execution
of an SoS, it is necessary to enable the access from SosADL Studio to the panel of
already existing algorithms and tools used for simulation, validation and verification of
software systems. Many of such tools operate on variants of labeled transition systems
(LTS), including input-output Labelled Transition System (ioLTS). It is not intuitive
and simple to express the behavioral semantics of an SoS architecture in terms of a
labeled transition system that is a quite low-level model. Moreover, each tool used for
verification is based on different kinds of transition systems which implies the redefini-

Team ARCHWARE IRISA Activity Report 2017

tion of the transformation. Therefore, in this research, we conceived a pivot model in
our transformation chain based on a set of input-output Symbolic Transitions Systems
(i0STSs). An SoS architecture is represented by a set of i0STS communicating to each
other through unified input and output actions. Each ioSTS models the behavior of
either a constituent system or a mediator.

3.1.6 Formal verification by model checking of SCADA architectures

Keywords: Formal Verification, Timed Automata, Architectural Style,
Software-intensive Systems (SiS).

The design of systems for Supervisory Control And Data Acquisition (SCADA) often
suffers from problems of communication and interpretation of specifications between the
various designers, frequently coming from a wide range of technical fields. In order to
address the architectural design of these systems, several methods have been proposed in
the literature. Among them, the so-called mixed method (bottom-up/top-down), which
organizes the design in two steps. In the first step (bottom-up), a model of the system
is defined from a set of standardized components. This model undergoes, in the second
(top-down) step, several refinements and transformations to obtain more concrete mod-
els, including code, etc. To guarantee the quality of the systems designed according to
this method, in this research we developed two formal verification approaches, based
on Model-Checking. The first approach concerns the verification of standardized com-
ponents and allows the verification of a complete elementary control-command chain.
The second one consists in verifying the model of architecture (P&ID) used for the
generation of control programs.The latter is based on the definition of an architectural
style in Alloy for the ANSI/ISA-5.1 standard. To support both approaches, two for-
mal semi-automated verification flows based on Model-Driven Engineering have been
proposed. This integration of formal methods in an industrial context is facilitated by
the automatic generation of formal models from design models carried out by business
designers. Our two approaches have been validated on a concrete industrial case of a
fluid management system embedded in a ship. For details see: [2, [13], T4 [12].

3.2 Methods for architecting software-intensive systems and SoS

Keywords: Component-based Architecture, Architecture Design,
Software-intensive Systems (SiS), Systems-of-Systems (SoS).

Participants: Nicolas Belloir, Isabelle Borne, Régis Fleurquin, Salah Sadou.

With the increasing complexity of Software-intensive Systems (SiS), the needs for
developing methods for architecting SiSs based on component-oriented approaches has
increased. It complements the research line on SoS. In the sequel, the main results of
this line of work produced in 2017 are presented.

10

Team ARCHWARE IRISA Activity Report 2017

3.2.1 Preserving architectural pattern composition in component-based
software architecture

Keywords: Architectural Pattern, Pattern Composition, Composable
Architecture Description, Software-intensive Systems (SiS).

Component-based systems have been proved to support the adaptation to new re-
quirements thanks to their flexibility. A typical method of composable software devel-
opment is to select and combine a number of patterns that address the expected quality
requirements. Therefore, pattern composition has become a crucial aspect during soft-
ware design. One of the shortcomings of existing work about pattern composition is the
vaporization of composition information which leads to the problem of traceability and
reconstructability of patterns. In this research, we proposed to give first-class status
to pattern merging operators to facilitate the preservation of composition information.
The approach is tool-supported and an empirical study has also been conducted to
highlight its effectiveness. By applying the approach on the composition of a set of for-
malized architectural patterns, including their variants, we have shown that composed
patterns have become traceable and reconstructable. For details see: [?].

3.2.2 Automated refactoring of component-based software architecture

Keywords: Search-based Approach, Genetic Algorithm, Refactoring,
Component-based Systems, Software Architecture.

During its lifecycle, a software system undergoes repeated modifications to quickly
fulfill new requirements, but its underlying design is not properly adjusted after each
update. This leads to the emergence of bad smells. Refactoring provides a de facto
behavior-preserving approach to eliminate these anomalies. However, manually deter-
mining and performing useful refactorings is a formidable challenge, as stated in the
literature. Therefore, framing object-oriented automated refactoring as a search-based
technique has been proposed. However, the literature shows that search-based refac-
toring of component-based software has not yet received proper attention. In this re-
search, we developed a genetic algorithm-based approach for the automated refactoring
of component-based software. This approach consists of detecting component-relevant
bad smells and eliminating these bad smells by searching for the best sequence of refac-
torings using a genetic algorithm. The developed approach consists of four steps. The
first step includes studying the literature related to component-relevant bad smells and
formulating bad smell detection rules. The second step involves proposing a catalog
of component-relevant refactorings. The third step consists of constructing a source
code model by extracting facts from the source code of a component-based software.
The final step seeks to identify the best sequence of refactorings to apply to reduce the
presence of bad smells in the source code model using a genetic algorithm. The latter
uses bad smell detection rules as a fitness function and the catalog of refactorings as a
means to explore the search space. As a case study, we conducted experiments on four
real-world component-based applications. The results indicated that our approach is
able to efficiently reduce the total number of bad smells by more than one half, which

11

Team ARCHWARE IRISA Activity Report 2017

is an acceptable value compared to the recent literature. Moreover, we determined that
our approach is also accurate in refactoring only components suffering from bad smells
while leaving the remaining components untouched whenever possible. Furthermore, a
statistical analysis showed that our genetic algorithm outperforms random search and
local search in terms of efficiency and accuracy on almost all the systems investigated
in this work. For details see: [6].

3.2.3 Mission-based simulation for preparing SoS architecture

Keywords: Simulation, Mission, Situation Paradigm, Reaction paradigm,
Software Architecture, Systems-of-Systems (SoS).

Modeling and simulation play a major role in complex system engineering. In SoS
engineering, simulation helps to better understand and identify the side effects associ-
ated with the integration of autonomous constituent systems. Simulation is also a way
of apprehending the emerging behaviors from this integration. The dynamic and evolv-
ing nature of the SoS environment has led us to rely on the most stable part to define
them, namely their mission. In this research, we developed a simulation framework for
SoS based on a conceptual model defining the mission. Mission is defined as a set of
situations that require reactions. Situations are defined by rules on facts related to the
SoS environment. Reactions are defined as orchestrations of services from constituent
systems that must be triggered when a situation is identified. Regarding assessment,
we carried out an SoS case study on health assistance. For details see: [§].

4 Software development

4.1 The SoS Architect Studio for SosADL
Participants: Gersan Moguérou, Jérémy Buisson, Elena Leroux, Flavio Oquendo.

SosADL Studio, the SosADL Architecture Development Environment, is a novel en-
vironment for description, verification, simulation, and compilation/execution of SoS
architectures. With SosADL Studio, SoS architectures are described using SosADL,
an Architecture Description Language based on process algebra with concurrent con-
straints, and on a meta-model defining SoS concepts. Because constituents of an SoS
are not known at design time, SosADL promotes a declarative approach of architecture
families. At runtime, the SoS evolves within such a family depending on the discov-
ery of concrete constituents. In particular, SosADL Studio enables to guarantee the
correctness of SoS architectures.

At the end of 2017, the SOSADL Studio includes the following modules.

4.1.1 The type system in Coq, the type-checker and the proof generator

Participants: Jérémy Buisson.

12

Team ARCHWARE IRISA Activity Report 2017

The type-checker is based on the SOSADL type system written in Coq, which covers 2/3
of the SoOSADL language. Coq proofs are generated after each successful type checking,
enabling the verification of the type-checker according to the type system.

4.1.2 SosADL2Alloy: The concrete architecture generator
Participants: Milena Guessi, Flavio Oquendo.

The concrete architecture generator (SosADL2Alloy) module automatically transforms
a SosADL abstract architecture into an abstract architecture in Alloy, and generates
a Java class to launch a SAT solver through the Alloy Analyzer. The solutions are
SoSADL concrete architectures. This module has been finished, and has to be integrated
into the SosADL Studio.

4.1.3 SosADL2DEVS: The DEVS generator

Participants: Valdemar Neto, Wallace Manzano.

The SosADL2DEVS generator takes one concrete architecture as input and generates a
DEVS program, which can be simulated using the MS4ME software. The simulations
also generates traces. A client-server link between MS4ME and Plasmalab — devel-
oped in the Tamis team — enables Statistical Model Checking, by reusing traces of the
simulation.

4.1.4 SosADL2IoSTS: The IoSTS generator
Participants: Elena Leroux, Gersan Moguérou.

The SosADL2IoSTS generator takes one concrete architecture, and generates an i0STS
model in order to verify interesting and important functional properties of SoS by giving
this model to different existing tools used for verification of software systems. The
development of a new translator from i0STS to Uppaal has been started.

4.1.5 The SoSADL Studio

Participants: Gersan Moguérou, Jérémy Buisson, Elena Leroux, Milena Guessi,
Valdemar Neto, Flavio Oquendo.

The SoSADL Studio provides an Integrated Development Environment (IDE), a
simulator, a model-checker, and a statistical model-checker.

The SosADL Studio is developed under Xtext/Eclipse. It integrates the above mod-
ules into an IDE, which provides a syntactical editor to define an abstract SoS archi-
tecture, and then enable the following workflow:

e The type-checker validates the abstract SoS architecture written in SosADL, and

13

Team ARCHWARE IRISA Activity Report 2017

generates a Coq proof. This proof can be verified using the Coq proof assistant,
according to the SosADL type system written in Coq.

e The concrete SoS architectures are then generated, using the SosADL2Alloy mod-
ule.

e Each concrete SoS architecture can be transformed into a DEVS program, using
the SosADL2DEVS module, and simulated using the MS4ME tool. The traces of
the simulation enable Statistical Model Checking in Plasmal.ab.

e Each concrete architectures can be transformed into i0STS, and then into an
Uppaal program, in order to verify functional properties by Model Checking.

5 Contracts and collaborations

5.1 National Initiatives

e Coordination of the GT SoS at GDR GPL (Groupement de Recherche Génie de
la Programmation et du Logiciel (INS2I): GT Systems-of-Systems composed of
16 research-teams (ACADIE, ARCHWARE, CPR, DIVERSE, ESTASYS, ISC,
MACAO, MAREL, MODALIS, MOVIES, RSD, SARA, SOC, SPADES, SPI-
RALS, TEA) from 8 UMRs (CRISTAL, I3S, IRISA, IRIT, LIRIS, LIRMM, LIX et
VERIMAG), 1 UPR (LAAS), and 3 INRIA centers (Rennes Bretagne Atlantique,
Lille Nord Europe, Grenoble Rhone-Alpes), the LabEx M2ST, the IRT SystemX
as well as 9 engineering companies developing SoSs (AIRBUS, CAP GEMINI,
CS, Naval Group, SEGULA, THALES Group, THALES Alenia Space, THALES
Communications et Sécurité, THALES Recherche & Technologie) and the french
association of systems engineering AFIS.

5.2 Bilateral industry grants

e SEGULA Technologies: CIFRE Scholarship
5.3 Collaborations
National Collaborations with Joint Publications:

e Flavio Oquendo has a collaboration on systems-of-systems with Khalil Drira
(LAAS-CNRS)

e Salah Sadou has a collaboration on reuse of architectural constraints with Chouki
Tibermancine and Christophe Dony (LIRMM)

International Collaborations with Joint PhD Supervision:

e Flavio Oquendo:

14

Team ARCHWARE IRISA Activity Report 2017

USP - University of Sao Paulo - ICMC Research Institute, Sao Carlos, Brazil
(Elisa Nakagawa)

UFRN - Federal University of Rio Grande do Norte, Natal, Brazil (Thais
Batista)

e Salah Sadou:

University of Science and Technology of Houari Boumedienne, Alger, Algeria
(Mohamed Ahmed Nacer)

e Isabelle Borne:

LISCO, University Badji Mokhtar Annaba, Algeria (Djamel Meslati)

Local Collaborations:

6 Dissemination

6.1 Promoting scientific activities

Research and Doctoral Supervizing Awards (PEDR)

e Flavio Oquendo: PEDR (2016-2020)

e Salah Sadou: PEDR (2014-2017)

Chair/Member of Conference Steering Committees

e Flavio Oquendo:

European Conference on Software Architecture - ECSA (Steering Committee
Chair)
IEEE International Conference on Software Architecture - ICSA (Steering

Committee Member)

Conférence francophone sur les architectures logicielles - CAL (Steering Com-
mittee Member)

IEEE International Conference on Collaboration Technologies and Infras-
tructures - WETICE (Steering Committee Member)

ACM International Workshop on Software Engineering for Systems-of-
Systems (technically co-sponsored by ACM SIGSOFT and ACM SIGPLAN)
- SESOS (Steering Committee Chair)

e Salah Sadou:

CIEL: French Conference on Software Engineering (Steering Committee
Member)

15

Team ARCHWARE IRISA Activity Report 2017

Chair/Member of Conference Program Committees

e Nicolas Belloir:

— AICCSA: ACS/IEEE International Conference on Computer Systems and

Applications, Conference Track on Software Engineering, 2017

— INFORSID: INFormatique des ORganisations et Systémes d’Information et

de Décision, 2017

Isabelle Borne:

— SESOS: ACM/IEEE ICSE International Workshop on Software Engineering

for Systems-of-Systems, 2017

— AICCSA: ACS/IEEE International Conference on Computer Systems and

Applications, Conference Track on Software Engineering, 2017 (PC Chair)

Jérémy Buisson:

— ICCS: International Conference on Computational Science, 2017

— AICCSA: ACS/IEEE International Conference on Computer Systems and

Applications, Conference Track on Software Engineering, 2017

Régis Fleurquin

— AICCSA: ACS/IEEE International Conference on Computer Systems and

Applications, Conference Track on Software Engineering, 2017

Flavio Oquendo:

— SOSE: IEEE International Conference on System-of-Systems Engineering,

2017 (PC Chair of Special track on Software-intensive Systems-of-Systems)

SISOS: ACM International Symposium On Applied Computing Program,
Conference Track on Software Software-intensive Systems-of-Systems, 2017
(PC Chair)

SESOS: ACM/IEEE ICSE International Workshop on Software Engineering
for Systems-of-Systems, 2017 (PC Chair)

ICSA: IEEE International Conference on Software Architecture, 2017
ECSA: European Conference on Software Architecture, 2017

SATTA: ACM Symposium On Applied Computing Program, Conference
Track on Software Architecture: Theory, Technology, and Applications, 2017

CYBER: International Conference on Cyber-Technologies and Cyber-
Systems, 2017

ICSEA: International Conference on Software Engineering Advances, 2017

SOFTENG: International Conference on Advances and Trends in Software
Engineering, 2017

ICSOFT: International Conference on Software and Data Technologies, 2017

16

Team ARCHWARE IRISA Activity Report 2017

ICAS: International Conference on Autonomic and Autonomous Systems,
2017

ICONS: International Conference on Systems, 2017
— COMPLEXIS: International Conference on Complexity, 2017
— CAL: French Conference on Software Architecture, 2017

— SBES: Brazilian Symposium on Software Engineering, 2017
e Salah Sadou:

— AICCSA: ACS/IEEE International Conference on Computer Systems and
Applications, Conference Track on Software Engineering, 2017 (PC Chair)

— SESOS: ACM/IEEE ICSE International Workshop on Software Engineering
for Systems-of-Systems, 2017
6.1.1 Journal

Member of the Editorial Boards

e Flavio Oquendo:
— Springer Journal of Software Engineering Research and Development (Mem-

ber of the Editorial Board)

6.1.2 Scientific Expertise

e Flavio Oquendo:

— Scientific Expert acting as reviewer and evaluator of R&D Projects for the
European Commission (Horizon H2020)

— Expert acting as evaluator of R&D Projects for the ANR (Agence Nationale
de la Recherche) on Software Sciences and Technologies

— Expert acting as evaluator of R&D Projects for the FWO (Research Foun-
dation Flanders, Belgium) on Cyber-Physical Systems and SoS

6.1.3 Laboratory Administration

e [sabelle Borne: Responsible of the Site of Vannes for IRISA

6.1.4 Academic Council (CAC)

e Salah Sadou: Member of the CAC (Commission recherche du conseil académique)
of UBS

17

Team ARCHWARE IRISA Activity Report 2017

6.2 Teaching
6.2.1 Teaching

e Academics of ARCHWARE teach at the Research Master on Computer Science
of Université Bretagne Sud

6.2.2 Teaching Responsibility

e Salah Sadou: Head of the Engineering Degree on Software Cybersecurity of EN-
SIBS School of Engineering

e Flavio Oquendo: Head of the Research Master Degree on Computing of Université
Bretagne Sud (part of the regional research master in Computer Science headed
by Université de Rennes 1)

Books and Monographs

[1] Proceedings of the 1st ACM SAC Conference Track on Software-intensive Systems-
of-Systems (SiSoS 2017), Marrakesh, Morocco, ACM, April 2017, https://hal.
archives-ouvertes.fr/hal-01445350.

Doctoral dissertations and “Habilitation’” theses

[2] S. M. KEsrAoUl, Integration of formal verification techniques into a control-command
system design approach : application to SCADA architectures, Theses, Université de
Bretagne Sud, May 2017, https://tel.archives-ouvertes.fr/tel-01738049.

[3] M. G. MARGARIDO, Synthesis of software architectures for systems-of-systems : an auto-
mated method by constraint solving, Theses, Université de Bretagne Sud, September 2017,
https://tel.archives-ouvertes.fr/tel-01793110.

Articles in referred journals and book chapters

[4] L. BueNo Ruas DE OLIVEIRA, E. LEROUX, K. ROMERO FELIZARDO, F. OQUENDO,
E. YuMi NAKAGAwA, “ArchSORS: A Software Process for Designing Software Archi-
tectures of Service-Oriented Robotic Systems”, The Computer Journal 60, 9, September
2017, p. 1363-1381, https://hal.archives-ouvertes.fr/hal-01442597.

[6] V. V. Graciano NETo, C. E. BARROS PAEs, L. GARCES, M. GUEssI, W. MANZANO,
F. OQUENDO, E. Y. NAKAGAWA, “Stimuli-SoS: a model-based approach to derive stimuli
generators for simulations of systems-of-systems software architectures”, Journal of the
Brazilian Computer Society 23, 1, December 2017, https://hal.archives-ouvertes.
fr/hal-02132109.

[6] S. KEBIR, I. BORNE, D. MESLATI, “A Genetic Algorithm-Based Approach for Automated

Refactoring of Component-Based Software”, Information and Software Technology 88,
August 2017, p. 17 — 36, https://hal.archives-ouvertes.fr/hal-01705479.

18

Team ARCHWARE IRISA Activity Report 2017

[7] M. T. THON THAT, S. SADOU, F. OQUENDO, I. BORNE, “Preserving architectural
pattern composition information through explicit merging operators”, Future Genera-
tion Computer Systems 47, June 2017, p. 97-112, https://hal.archives-ouvertes.
fr/hal-01102209.

Publications in Conferences and Workshops

[8] R. BENABIDALLAH, I. CHERFA, S. SADOU, M. AHMED-NACER, “Situation/Reaction
Paradigm for SoS Simulation”; in: 26th IEEFE International Conference on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, WETICE 2017, Poznan, Poland,
June 21-23, 2017, S. Reddy, W. Cellary, M. Fugini (editors), IEEE Computer Society,
p. 48-53, 2017, https://doi.org/10.1109/WETICE.2017.25.

[9] I. BorNE, M. H. FENDALI, D. MESLATI, “Understanding evolution in systems of sys-
tems”, in: 2017 IEEE International Systems Engineering Symposium (ISSE), IEEE,
Vienna, Austria, October 2017, https://hal.archives-ouvertes.fr/hal-01705414.

[10] L. GARCES, F. OQUENDO, E. YUMI NAKAGAWA, “ A Process to Establish, Model and
Validate Missions of Systems-of-Systems in Reference Architectures.”; in: The 32nd ACM
Symposium on Applied Computing, p. 1-8, Marrakesh, Morocco, April 2017, https:
//hal.archives-ouvertes.fr/hal-01429108.

[11] J. LETE, T. BATISTA, F. OQUENDO, “Architecting IoT Applications with SysADL”,
in: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW),
IEEE, p. 92-99, Gothenburg, France, April 2017, https://hal.archives-ouvertes.fr/
hal-02132111.

[12] S. MEsLI, A. BieNnoN, D. KEsraoul, A. TOGUYENI, F. OQUENDO, P. BERRUET,
“Vérification formelle de chaines de controle-commande d’éléments de conception stan-
dardisés”, in: Proceedings of the 11th International Conference on Modeling, Opti-
mization & Simulation (MOSIM 2016), Montréal, Canada, August 2016, https:
//hal.archives-ouvertes.fr/hal-01441589.

[13] S. MEsLi, D. Kesraoul, F. OQUENDO, A. BIGNON, A. TOGUYENI, P. BERRUET,
“Formal Verification of Software-Intensive Systems Architectures Described with Piping
and Instrumentation Diagrams ”, in: Proceedings of the 10th European Conference on
Software Architecture (ECSA 2016), LNCS, 9839, Springer, p. 210-226, Copenhagen,
Denmark, November 2016, https://hal.archives-ouvertes.fr/hal-01440744.

[14] S. MEesLi, A. ToGUuYENI, A. BigNON, F. OQueEnDO, D. KEsraoul, P. BERRUET,
“Formal and Joint Verification of Control Programs and Supervision Interfaces for Socio-
technical Systems Components”, in: Proceedings of the 13th IFAC Symposium on Analy-
sis, Design, and Evaluation of Human-Machine Systems (HMS 2016), IFAC, p. 427-467,
Kyoto, Japan, August 2016, https://hal.archives-ouvertes.fr/hal-01441587.

[15] E. Y. Nakacawa, F. OQUENDO, P. AvGERIOU, R. SANTOS, “Proceedings of the
IEEE/ACM Joint 5th International Workshop on Software Engineering for Systems-of-
Systems and 11th Workshop on Distributed Software Development, Software Ecosystems
and Systems-of-Systems”, in: 2017 IEEE/ACM Joint 5th International Workshop on
Software Engineering for Systems-of-Systems and 11th Workshop on Distributed Software
Development, Software Ecosystems and Systems-of-Systems (JSOS), IEEE, Buenos Aires,
Argentina, May 2017, https://hal.archives-ouvertes.fr/hal-02132114.

19

Team ARCHWARE IRISA Activity Report 2017

[16] F. OQUENDO, “Architecturally describing the emergent behavior of software-intensive
system-of-systems with SosADL”, in: 2017 12th System of Systems Engineering Con-
ference (SoSE), IEEE, p. 1-6, Waikoloa, United States, June 2017, https://hal.
archives-ouvertes.fr/hal-02132117.

[17] F. OQUENDO, “Software architecture of self-organizing systems-of-systems for the
Internet-of-Things with SosADL”, in: 2017 12th System of Systems Engineering Con-
ference (SoSE), IEEE, p. 1-6, Waikoloa, United States, June 2017, https://hal.
archives-ouvertes.fr/hal-02132121.

20

	Team composition
	Overall objectives
	Overview
	Scientific foundations
	Application domains

	Scientific achievements
	The SoS Architecture Description Language (SosADL)
	Architecturally describing the emergent behavior of SoS with SosADL
	Architecturally describing self-organizing SoS with SosADL
	Synthesis of software architectures for SoS with SosADL
	Designing software architectures of service-oriented robotic systems
	Pivot model for supporting verification of SoS architectures described with SosADL
	Formal verification by model checking of SCADA architectures

	Methods for architecting software-intensive systems and SoS
	Preserving architectural pattern composition in component-based software architecture
	Automated refactoring of component-based software architecture
	Mission-based simulation for preparing SoS architecture

	Software development
	The SoS Architect Studio for SosADL
	The type system in Coq, the type-checker and the proof generator
	SosADL2Alloy: The concrete architecture generator
	SosADL2DEVS: The DEVS generator
	SosADL2IoSTS: The IoSTS generator
	The SoSADL Studio

	Contracts and collaborations
	National Initiatives
	Bilateral industry grants
	Collaborations

	Dissemination
	Promoting scientific activities
	Journal
	Scientific Expertise
	Laboratory Administration
	Academic Council (CAC)

	Teaching
	Teaching
	Teaching Responsibility

